
Microsoft Windows
Programmer FAQ

Frequently Asked Questions

Copyright
This document is compilation copyright © 1990-1992 by Tom Haapanen.    It may be freely copied
and/or distributed in its entirety as long as this copyright notice is not removed.    It may not be sold for
profit or incorporated into commercial products without the author's written permission.

Note: Revision dates for each section are shown next to the section names on each index page!    To
find updated sections for a particular date, click the Search button in WinHelp and enter
"Updated:" to see the various update dates available.

Credits
Microsoft Windows 92-09-21
Internet and Usenet 92-10-07
Software Development Kits
Programming Techniques 92-10-07
Interfacing to the outside world 92-10-07
Putting it all together 92-09-28
A programmer's bibliography 92-09-28

Credits
The author may be contacted by the following means:

Internet: tomh@wes.on.ca
UUCP: uunet!watserv1!wes!tomh
CompuServe: >INTERNET: tomh@wes.on.ca

Mail: Tom Haapanen
Software Metrics Inc.
22 King St. S., suite 303
Waterloo, Ont.
N2J 1N8, Canada

The Word for Windows 2.0 to WinHelp conversion macros were created by Roger Hadgraft, senior
lecturer in Civil Engineering at Monash University, Clayton, Victoria, Australia.

Internet: roger.hadgraft@eng.monash.edu.au
UUCP: uunet!eng.monash.edu.au!roger.hadgraft
CompuServe: >INTERNET: roger.hadgraft@eng.monash.edu.au

Microsoft Windows
Windows 1.0
Windows 2.0
Windows/386
Windows 3.0
Windows 3.1 92-09-21
Windows NT
Win32s for Windows 3.1
Windows for Pen Computing
Multimedia Windows
Modular Windows
WinOS2

Windows 1.0
Microsoft first began development of the Interface Manager (subsequently renamed Microsoft
Windows) in September 1981.    Although the first prototypes used Multiplan and Word-like menus at
the bottom of the screen, the interface was changed in 1982 to use pull-down menus and dialogs, as
used on the Xerox Star.   

Microsoft finally announced Windows in November 1983, with pressure from just-released VisiOn and
impending TopView.    This was after the release of the Apple Lisa (but prior to the Macintosh), and
before Digital Research announced GEM, another competing graphical environment.    Windows
promised an easy-to-use graphical interface, device-independent graphics and multitasking support.   
The development was delayed several times, however, and the first version hit the store shelves
(after 55 programmer-years of development!) in November 1985.    The selection of applications was
sparse, however, and Windows sales were modest,

The following were the major features of Windows 1.0:
· Graphical user interface with drop-down menus, tiled windows and mouse support
· Device-independent screen and printer graphics
· C˜o-operative multitasking of Windows applications

Windows 2.0
Windows 2.0, introduced in the fall of 1987, provided significant useability improvements to Windows. 
With the addition of icons and overlapping windows, Windows became a viable environment for
development of major applications (such as Excel, Word for Windows, Corel Draw!, Ami, PageMaker
and Micrografx Designer), and the sales were spurred by the runtime (Single Application
Environment) versions supplied by the independent software vendors.    When Windows/386 (see
next section) was released, Microsoft renamed Windows to Windows/286 for consistency.

The following are the major changes from earlier versions of Windows:
· Overlapping windows
· PIF files for DOS applications

Windows/386
In late 1987 Microsoft released Windows/386.    While it was functionally equivalent to its sibling,
Windows/286, in running Windows applications, it provided the capability to run multiple DOS
applications simultaneously in the extended memory.

The following are the major changes from earlier versions of Windows:
· Multiple DOS virtual machines with pre-emptive multitasking

Windows 3.0
Microsoft Windows 3.0, released in May, 1990, was a complete overhaul of the Windows
environment.    With the capability to address memory beyond 640K and a much more powerful user
interface, independent software vendors started developing Windows applications with vigour.    The
powerful new applications helped Microsoft sell more than 10 million copies of Windows, making it the
best-selling graphical user interface in the history of computing.

The following are the major changes from earlier versions of Windows:
· Standard (286) mode, with large memory support
· 386 Enhanced mode, with large memory and multiple pre-emptive DOS session support
· No runtime versions available
· Program Manager and File Manager added
· Network support
· Support for more than 16 colors
· API support for combo boxes, hierarchical menus and private .ini files

Windows 3.1 92-09-21
Microsoft Windows 3.1, released in April, 1992 provides significant improvements to Windows 3.0.    In
its first two months on the market, it sold over 3 million copies, including upgrades from Windows 3.0.

The following are the major changes from Windows 3.0:
· No Real (8086) mode support
· TrueType scalable font support
· Multimedia capability
· Object Linking and Embedding (OLE)
· Application reboot capability
· "Mouse Trails" for easier mouse use with LCD display devices
· Better inter-application protection and better error diagnostics
· API multimedia and networking support
· Source-level API compatability with Windows NT

Windows NT
Microsoft Windows NT, scheduled for release at the end of 1992, is Microsoft's platform of choice for
high-end systems.    It is intended for use in network servers, workstations and software development
machines; it will not replace Windows for DOS.    While Windows NT's user interface is very similar to
that of Windows 3.1, it is based on an entirely new operating system kernel.

The following are the major changes from Windows 3.1:
· Based on a new microkernel design
· Portable architecture for Intel x86, MIPS R4000 and DEC Alpha processors
· 32-bit addressing for access to up to 4 GB of memory
· Fully protected applications with virtualized hardware access
· Installable APIs for Win32, Win16, MS-DOS, POSIX and OS/2
· Installable file systems, including FAT, HPFS and NTFS
· Built-in networking (LAN Manager and TCP/IP) with remote procedure calls (RPCs)
· Symmetric multiprocessor support
· Security designed in from start, to be initially C2 certified, with a B-level kernel design
· API support for unsynchronized message queues, advanced interprocess communication,

registration databases, Bezier curves and graphics transformations.

Although Windows NT has not yet been released, the following is generally accepted as the minimum
platform for use with the retail release of Windows NT:
· 33 MHz 386 processor
· 8 MB memory
· 100 MB hard disk
· VGA graphics

As of July 1992, Windows NT is available as a pre-release SDK (Software Development Kit) from
Microsoft at the cost of $69 (or $399 for the pre-release SDK plus full printed documentation).    This
release is supplied on CD-ROM only, and contains the Windows NT operating system as well as all
the necessary 32-bit development tools (including a 32-bit C++ compiler and all documentation online
on the CD-ROM).    The purchasers of this SDK will also receive free updates to Windows NT up to
and including final release.

The pre-release Windows NT SDK requires 12 MB of RAM and is not suitable for evaluating the
Windows NT environment.    It is intended strictly for software development!    Contact your national
Microsoft subsidiary (or Microsoft itself in Redmond, WA) for ordering information.

Win32s for Windows 3.1
Win32s is a set of libraries for Windows 3.1, which enable users to run most Windows NT 32-bit
applications on Windows 3.1, without the extensive hardware requirements of Windows NT.    The
Win32s interface will likely replace the older Windows-32 interface used by current 32-bit Windows
applications such as Mathematica.

Win32s has not yet been released, and Microsoft has not released minimum system requirements for
using Win32s applications.

Windows for Pen Computing
Microsoft developed Windows for Pen Computing for use on pen-based systems.    In most aspects, it
is basically equivalent to Windows 3.1 with extensions for pen support.    These extensions include the
useof a pen as a pointing device as well as handwriting recognition and conversion.    Pen Windows
first shipped in April, 1992.

Multimedia Windows
The term Multimedia Windows describes a package with Windows 3.0 and the Multimedia
Extensions.    These extensions are included in Windows 3.1, and thus Multimedia Windows is no
longer sold as a separate product.

Modular Windows
Modular Windows is the operating system for Tandy Corp.'s Video Information System (VIS)
multimedia player.

WinOS2
WinOS2 is the Windows component of IBM's OS/2 2.0.    It is based partially on Windows 3.0 and
partially on 3.1.    While it runs a majority of the commercial Windows applications, it is not covered by
this document.

Internet and Usenet
Usenet
Usenet Windows newsgroups
Alternatives to Usenet
Freeware and shareware by ftp
Popular Internet ftp sites 92-10-07
Using archie 92-09-21
Ftp by email
More about Internet and Usenet
FTP archives on CD-ROM 92-09-21

Usenet
If you received this FAQ from somewhere other than Usenet or Internet, you may not be familiar with
Usenet.    Basically, Usenet is a loose collection of over 100,000 computers which exchange mail and
news.    The network is unstructured and highly distributed; most communication is either by TCP/IP
over high-speed connections, or UUCP over public telephone lines.    Internet is a (almost proper)
subset of Usenet, consisting of somewhere    between 50,000 and 100,000 computers connected by
high-speed TCP/IP network connections.

Usenet news is a software system where a person can post an article to a selected newsgroup, and
have every other news reader be able to read it.    There are over 1000 newsgroups (including the alt
groups), and daily volume of news is approaching 40 MB.

While most Usenet systems are Unix-based, it is not a requirement.    If you have an Internet or UUCP
connection, ask your system administrator whether you have Usenet news available.    Some of the
most common newsreading software packages are readnews, rn, trn, nn and notes.

Usenet Windows newsgroups
There are a total of eight Usenet newsgroups dealing with Microsoft Windows:

· comp.os.ms-windows.advocacy
This group is intended for adversarial discussions, arguments and comparisons to other
computers and operating systems.

· comp.os.ms-windows.announce
This is a low-volume moderated group with only Windows-related announcements and with no
discussion.      Moderated by Todd Derr (infidel@pitt.edu).

· comp.os.ms-windows.apps
This group contains discussions, questions, and comments about the selection and use of
Windows applications.

· comp.os.ms-windows.setup
This group is meant for questions and discussions about Windows setup process, driver
availability and selection, and hardware compatability and selection.

· comp.os.ms-windows.misc
All other discussions about Windows should be in this group.

· comp.os.ms-windows.programmer.tools
This group is intended for discussions about the selection and use of    tools for Windows software
development.

· comp.os.ms-windows.programmer.win32
All discussions about the Win32 applications programming interface (used in Windows NT and
Win32s) and the Windows NT SDK belong in this group..

· comp.os.ms-windows.programmer.misc
This group is for all other discussions about Windows software development.

The following groups have been replaced by those shown above:
· comp.windows.ms

This group was for discussions about Microsoft Windows.
· comp.windows.ms.programmer

This group was for discussions about programming for Microsoft Windows.

The following groups may also be of interest:
· comp.os.msdos.programmer

This groups contains general MS-DOS programming questions.    Some, especially those
concerning compiler selection, may be of interest to Windows programmers.

· bit.listserv.win3-l
This group is a two-way gateway of the BITNET WIN3-L mailing list.

The following groups are not for Microsoft Windows!
· comp.windows.misc

This group is for miscellaneous discussions about windowing systems in general.
· comp.windows.news

This group is for dicussions about the Sun Microsystems NeWS windowing system.

In general, these newsgroups are only available to computers connected to Usenet or Internet; they
are not gatewayed into BITNET, CompuServe, Prodigy or other services. Some FidoNet BBS
systems, however, do carry selected Usenet newsgroups.

Alternatives to Usenet
If you are unable to find a connection to the Internet (that procedure can not be easily defined, as the
Internet does not have any sort of a formal structure), there are several alternatives available for
finding more information about Windows, and for locating Windows software and drivers.

BITNET users (as well as any other with an electronic mail connection to Internet) can subscribe to
WIN3-L (win3-l@uicvm.bitnet), a mailing list dedicated to Windows discussions.    This mailing list is
similar in content to the comp.os.ms-windows.misc newsgroup; no programmer mailing list exists
on BITNET.

If you live in North AMerica (or in one of selected Western European countries), you can subscribe to
CompuServe, a commercial service.    CompuServe has extensive Windows-oriented discussions and
a fairly good selection of free software.    Although the level of discussion is often less technical, it is
much more structured than the Internet.    CompuServe also has numerous vendor-supported forums,
including ones organized by Microsoft for Windows and Windows NT.

Many FidoNet-based BBS systems also carry the Internet Windows newsgroups.    Consult a local
BBS listing to find your nearest FidoNet BBS.

Freeware and shareware by ftp
While CompuServe (which has a lot of software) and your local BBS may have large selections, the
Internet provides an immense resource for all PC users.    The key program to access this software is
called ftp (File Transfer Protocol), and it's useable from most Internet system, but is not usable
through UUCP links.   

If you do have ftp available to you, follow the example below to connect to ftp.cica.indiana.edu (do not
type in the // comments):

$ ftp ftp.cica.indiana.edu // make connection
Connected to ... // cica responds
Userid (user@cica): ftp // enter "ftp" as userid
Password: real_userid@site // enter your own userid
ftp> tenex // for binary transfers
ftp> cd /pub/pc/win3 // where the goodies are
ftp> ls -l // list the directory
ftp> get ls-ltR // get the current index
ftp> quit // we're done!
$ _

Of course, you can get multiple files at a time    read the ftp manual page for more information.   

Remember that shareware is not free: register the software you use to encourage the development
of more low-cost software.

Popular Internet ftp sites 92-10-07
The following ftp sites provide significant amounts of software of interest to Windows users:
· ftp.cica.indiana.edu (129.79.20.84)

Directory /pub/pc/win3 contains one of the largest selections of Windows software and device
drivers anywhere.    Mirrored by wuarchive.    Please do not access ftp.cica.indiana.edu between
8am and 6pm EST to prevent overloading the system.

· simtel10.army.mil (26.2.0.74)
Directories /msdos1, /msdos2 and /msdos3 contains a very large selection of MS-DOS (and
some Windows) software.    Mirrored by wuarchive.

· wuarchive.wustl.edu (128.242.135.4)
Directory /mirrors/win3 contains a copy of the cica Windows archives, and directory
/mirrors/msdos contains a copy of the simtel10 MS-DOS archive.

· ftp.uu.net (137.39.1.9)
Directory /vendors/microsoft contains a lot of the Microsoft developer support materials available
on CompuServe, including tech notes, sample sources and WinHelp documentation for SDKs.

· garbo.uwasa.fi (128.214.12.3)
Directories /win3 and /win31 contain a majority of the cica Windows archives, and a fair amount f
non-cica material.    Note that garbo.uwasa.fi is located in Finland, and North American users
should avoid congesting transatlantic Internet links by ftping from this site.

If your ftp program complains about an unknown site, you can substitute the numeric Internet
address (shown after each site name above) for the name in the ftp command.

Using archie 92-09-21
If you know the program you're looking for, but don't know where to find it, you might try using a utility
called archie.    This program allows you to search for a filename in all the available ftp sites.

There are numerous archie servers available; to use one of them, telnet to the system, and sign on as
archie.    Follow instructions to search for a file.    The following lists some of the know archie servers
currently available for use; pick one in your geographical area:

· archie.rutgers.edu United States (Northeast)
· archie.sura.net United States (Southeast)
· archie.unl.edu United States (West)

· archie.mcgill.ca Canada
· archie.au Australia and New Zealand
· archie.funet.fi Europe
· archie.doc.ic.ac.uk United Kingdom

Ftp by email
There are several sites that will perform general FTP retrievals for you in response to a similar mail
query, although it appears that the info-server@cs.net server is permanently out of order.   

In general, please be considerate, and don't over-use these services.    If people start using them to
retrieve megabytes and megabytes of GIF or WAV files, they will probably disappear.    Also, keep in
mind that your system may be linked to the net using a long-distance UUCP connection, and your
sysadmin may not be happy about large mail files using up modem time and filling overloaded spool
directories.

· bitftp@pucc.bitnet
For information on this one (available only to BITNET sites) send it the message:

help

· ftpmail@decwrl.dec.com
For information on this server, available to all Internet sites, send it a mail message with a body
containing simply:

help

· mailserv@garbo.uwasa.fi
One final choice is to use the garbo.uwasa.fi server, which lets you access the garbo.uwasa.fi
archive (which contains most of the cica files).    For instructions, send it a mail message with
"Subject: garbo-request" and a single line of text "send help" to

send help
Please do not use this service if you are located in North America!

More about Internet and Usenet
To learn more about Internet and Usenet, I strongly recommend you purchase or borrow a copy of Ed
Krol's The Whole Internet User's Guide and Catalog (ISBN 1-56592-025-2, $24.95), which covers
email, news, ftp, archie and much more.    This 400-page handbook is a thorough guide to getting
around on the Net, clear enough for neophytes but with new information even for true Internet
veterans.   

To purchase The Whole Internet User's Guide and Catalog, check your local bookstore or contact the
publisher, O'Reilly and Associates at 1-800-998-9938 (103 Morris St., Sebastopol, CA 95472).

FTP archives on CD-ROM 92-09-21
Walnut Creek offers copies of the cica, wuarchive and simtel FTP archives on CD-ROM, at prices
ranging from $25 to $50, with annual subscriptions available.    Call (800) 786-9907 or (510) 947-5996
for more information.Software Development Kits

Software Development Kits
Windows 3.1 SDK
Windows 3.1 DDK
Windows 3.0 SDK
Windows NT (Win32) Pre-Release PDK
Windows NT (Win32) Pre-Release DDK

Windows 3.1 SDK
The primary Windows development tool you need to do development is the Windows 3.1 Software
Development Kit (SDK).    It includes the libraries, header files, resource tools, documentation and the
Windows debug kernel you need to create native Windows applications.

Before you rush out to buy the SDK, though, note the following points:
· A number of integrated development tools (such as Actor, Visual Basic and Turbo Pascal for

Windows) do not require the SDK to operate.    See the Microsoft Windows Development
Tools FAQ for details on which tools do not require the SDK.

· A number of compilers (such as Microsoft C/C++ 7.0, Borland C++ 3.0 and Zortech C++ 3.0)
include the SDK to operate.    See the Microsoft Windows Development Tools FAQ for
details on the extent of the libraries, documentation and resource tools included with various
compilers..

The SDK includes the tools you need to create pen-based and multimedia applications, and it also
allows you to create applications to run on Windows 3.0.

The list price of the Windows 3.1 SDK is $349.

Windows 3.1 DDK
In order to develop device drivers or VxDs for Windows 3.x, you need to purchase the Windows 3.1
Device Driver Kit (DDK).    It includes the necessary header files, libraries, documentation and sample
source code to create new device drivers.

The list price of the Windows 3.1 DDK is $495.

Windows 3.0 SDK
The older version of the SDK, 3.0, is still quite useable with Windows 3.1, although it includes older
versions of the resource tools, Windows 3.0 debug kernel and is not capable of creating applications
which take advantage of the new Windows 3.1 features.

Windows NT (Win32) Pre-Release PDK
The latest membner of the Windows SDK family is the Win32 pre-release Professional Development
Kit (PDK).    As of July 1992, it is available from Microsoft at the cost of $69 (or $399 for the pre-
release PDK plus full printed documentation).   

Thie pre-release PDK is supplied on CD-ROM only, and contains the Windows NT operating system
as well as all the necessary 32-bit development tools (including a 32-bit C++ compiler).    The base
package includes all the documentation online on the CD-ROM in PostScript format, while the full
package includes printed manuals as well.    The purchasers of this PDK will also receive free updates
to Windows NT up to and including final release.

Windows NT (Win32) Pre-Release DDK
The Windows NT Device Driver Kit (DDK) will be available from Microsoft in late September for $495. 
It will include full printed documentation, and be available on CD-ROM only.    No base CD-ROM
version (without printed documentation) is currently planned.

Programming Techniques
User interface 92-09-15
Dialogs and controls 92-09-28
Memory
GDI 92-10-07
Miscellaneous 92-10-05

User interface
Finding the number of instances running
Creating an initially invisible MDI child window
Using status bars with MDI 92-09-15
Forcing a window to stay fixed size or iconic
Right-justifying menu items
Right-justifying menu items at runtime
Drag-and-drop: File Manager and Print Manager
Drag-and-drop: generalized
Minimize button on modal dialog moves when clicked
Trapping mouse clicks on desktop

Finding the number of instances running
Use the following code:

nNumInsts = GetModuleUsage(hInstance);

Note that this will always return 1 within Windows NT.

Creating an initially invisible MDI child window
Before creating the child window,

SendMessage(hClientWindow, WM_SETREDRAW, 0, 0L);
Then, in your child window WM_CREATE processing,

ShowWindow(hChildWindow, SW_HIDE).
SendMessage(hClientWindow, WM_SETREDRAW, 1, 0L);

Using status bars with MDI 92-09-15
Add the following code fragments to the indicated places in the WinProc()
of an application, or the FrameWinProc() of a MDI application.

case WM_CREATE:
 hWndClient = CreateWindow("MDIClient",...,
 WS_CHILD|WS_VISIBLE|WS_CLIBSIBLINGS|
 WS_HSCROLL|WS_VSCROLL,...);
 hWndStatus = CreateWindow("Static",...,
 WS_CHILD|WS_VISIBLE|SS_LEFT|SS_NOPREFIX,...);
 ...
case WM_SIZE:
 GetClientRect(hWnd,&rect);
 // Calculate DIVIDING_LINE such that.
 // rect.top < DIVIDING_LINE < rect.bottom
 // One choice:
 // DIVIDING_LINE = rect.bottom - GetSystemMetrics(SM_CYMENU);
 MoveWindow(hWndClient,rect.left,rect.top,
 rect.right,DIVIDING_LINE,TRUE);
 MoveWindow(hWndStatus,rect.left,DIVIDING_LINE,
 rect.right,rect.bottom,TRUE);
 break; // Do *not* pass to DefFrameProc() of MDI app!!!
 ...
 // To change the status text:
 SendMessage(hWndStatus,WM_SETTEXT,0,(LONG)(LPSTR)szStatusText);

Notes:
· For non-MDI applications, all references to hWndClient above will simply be removed.
· Menu selection can be tracked by setting the status text at a response to the WM_MENUSELECT

message.
· To draw a line between status bar and the rest of the client area, the DIVIDING_LINE should be

adjusted in either MoveWindow() call to leave a gap between, which is called
InvalidateRect() for, and actually being painted in response to the WM_PAINT.

· The parent window should have WS_CLIPCHILDREN style bit set.

Forcing a window to stay fixed size or iconic
In order to make your app stay as an icon, you must process the WM_QUERYOPEN message.    If you
always return 0 for this message, you indicate that the icon can not be opened into a ordinary window.

To retain a fixed size, you must process the WM_GETMINMAXINFO message. When you get it, modify
the info pointed to by lParam:

LPPOINT lpSize = (LPPOINT)lParam;
lpSize[3].x = lpSize[4].x = theRightWidth;
lpSize[3].y = lpSize[4].y = theRightHeight;

If you don't want the window to be maximized or iconized, create it with the ~WS_MAXIMIZEBOX
and/or ~WS_MINIMIZEBOX styles, and disable those items from the system menu, if there is one.   

Also, you can    alternately disable resizing by creating the windows with ~WS_THICKFRAME, and
disabling the Size... item on the system menu.

Right-justifying menu items
To right-justify an entire menu item or just a part of it, place a \a in the string just before the right-
justified part.   

Incidentally, the Windows 3.0 CUA guidelines no longer call for right-justifying the Help menu on the
menu bar.

Right-justifying menu items at runtime
It's undocumented, but what you need is a 0x08 in the menu string.    The easiest way to do this is to
place a \b in the string before the right-justified part (either the text of the accelerator key).   

Incidentally, the Windows 3.0 CUA guidelines no longer call for rightjustifying the Help menu on the
menu bar.

Drag-and-drop: File Manager and Print Manager
You will need to register your application in the registration database. You can do this either using the
Registration Editor, or the Reg* API in Windows 3.1 SDK.    One of the simplest mechanisms is that
used by several Windows 3.1 applets    to print a file the parameters are

/p filename
See the registration database for examples.

Drag-and-drop: generalized
To do generalized drag-and-drop, you'll need SHELL.DLL, shipped with Windows 3.1.

· Either do DragAccept() or create the window as WS_EX_DROPFILES (0x10L)
· Wait for the WM_DROPFILES message (0x0233), which passes a handle to something in

wParam

· You can then issue   
WORD DragQueryFile(hDrop, 0xffff, NULL, 0)

to get the file count, and then
WORD DragQueryFile(HANDLE hDrop, WORD nFile, LPSTR sDest, WORD max)

for each of the dropped files

· Once you have finished, call
DragFinish(hDrop)

For Visual Basic, get the file DD.ZIP from CompuServe's MBASIC forum, which lets you implement
drag-and-drop from VB.    This file may also be available at ftp.cica.indiana.edu.

Minimize button on modal dialog moves when clicked
It's a bug in Windows 3.1.    To duplicate this, create a modal dialog with the styles CAPTION, MODAL
FRAME, MINIMIZE-BOX, activate the dialog, press the Minimize button -- and watch it move to the
top right corner, on top of the modal frame!   

The workaround: don't use a Minimize box on a modal dialog.

Trapping mouse clicks on desktop
To trap mouseclicks on the desktop, you will need to subclass the desktop window.    The following
code fragment illustrates the technique (sample code courtesy of Blake Coverett,
blakeco@microsoft.com):

To subclass the desktop:
 hWndDesktop=GetDesktopWindow();
 hSaveTask=GetCurrentTask();
 lpfnDesktop=(FARPROC)GetWindowLong(hWndDesktop, GWL_WNDPROC);
 lpfnSubClassProc=MakeProcInstance((FARPROC)WndProc, hInst);
 SetWindowLong(hWndDesktop, GWL_WNDPROC,
 (LPARAM)(LONG)lpfnSubClassProc);

and then to undo it when ready to unload:
 SetWindowLong(hWnd,GWL_WNDPROC, (LPARAM)(LONG)lpfnDesktop);
 PostAppMessage(hSaveTask,WM_QUIT,0,0);

Dialogs and controls
Hiding dialog controls
Adding controls to a non-dialog window
Preventing switching away from a modal dialog
Subclassing standard controls
Allowing ENTER in a multiline edit control 92-09-15
Aligning multi-column listboxes 92-09-15
Changing button colors
Doing a timeout in a dialog
Using Borland custom dialogs with other compilers 92-09-28
Null dialog handles from Borland custom dialogs

Hiding dialog controls
EnableWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE), FALSE);
ShowWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE), SW_HIDE);
UpdateWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE));

Adding controls to a non-dialog window
You can do this by simply calling CreateWindow() with one of the predefined child window control
class names (see the control class definition table in the SDK reference manual).

Preventing switching away from a modal dialog
The design of the Windows API means that if there are two dialogs active simultaneously, the user
can switch between the two, even one of them is modal.    To prevent this, you should use
EnableWindow() to explicitly diable any modeless dialogs when your modal dialog starts up.

Subclassing standard controls
You can subclass standard controls by having your own window procedure handle the messages for
the windows you create (using SetWindowLong()).    The only caveat here is for useability: make
sure that your subclassed controls don't behave in an unexpected manner.

What is definitely a bad idea is modify the class procedure of a standard control (using
SetClassLong()) and changing the window procedure for all such windows, as this will affect all
edit controls in all applications currently running in the Windows session.

Allowing ENTER in a multiline edit control 92-09-15
To allow the use of the Enter key, there is no need to subclass the edit control.    An easier way (which
also works better!) is to specify ES_WANTRETURN as part of the style for the edit control (see the
Windows 3.1 SDK documentation for details).

Aligning multi-column listboxes 92-09-15
In the resource file make sure the list box has the LBS_USETABSTOPS style. When you add the items
to the listbox, separate the fields with tabs.    You can either use the default tab stops, or set your own
by sending the LBS_SETTABSTOPS message to the listbox. For more information, see the SDK
Reference, volumes 1 and 2.

 It is also possible to use a fixed font, but the tabstop solution usually ends up looking much better.

Changing button colors
In Windows 3.0, the button face is defined by two colors. The grey (white with EGA) face and a dark
grey (grey if ega) shadow.    The colors also change when the button goes from a normal to pushed in
state.    The WM_CTLCOLOR message only allows you to change one color at a time so to which of the
button face colors should this apply?    (Windows 2.x button faces had only one color so it made
sense.)

Maybe something tricky could have been done by using the background color for the shadow and
foreground color for the face and perhaps doing something strange to get the text color in another
way... And how do you return 2 brushes (you now need a foreground and a background brush)?    Or
maybe even better, make colors a property of the window and some windows could have multiple
color properties...

Anyway, Windows doesn't look at the WM_CTLCOLOR message for buttons and thus doesn't allow you
to change the button colors.    Try it with a listbox instead...    The only way to change button colors is
to specify ButtonColor=, ButtonShadow= and ButtonText= in the [Colors] section of your win.ini file.   

In Windows 3.1, the button text, shadow and face colors can also be defined using the Control Panel.

Doing a timeout in a dialog
Start a timer in your WM_INITDIALOG processing. If your dialog box receives the WM_TIMER
message, kill the timer and post yourself a WM_COMMAND messgae with wParam == IDOK. If the user
presses any button, restart the timer.

Using Borland custom dialogs with other compilers 92-09-28
You can't integrate bwcc.dll with the Dialog Editor but you can manually modify the dialog file and
use appropriate BWCC control classes and styles.

Include bwcc.h in your header file and then add bwcc.lib to your link options (before libw.lib). Also
make sure bwcc.dll can be found in either the Windows directory or the current directory when the
app starts or in the path.

Examples (thanks to Sam Espartero, sqe@hpcc01.corp.hp.com):

Link Options:
/align:16 /NOD PLAYCD USERCODE MCICDA SUPERCLS,PLAYCD.EXE,,
LIBW MLIBCEW bwcc mmsystem, PLAYCD.DEF

Dialog File:

ABOUT DIALOG 4, 5, 199, 137
STYLE WS_POPUPWINDOW | DS_MODALFRAME | WS_VISIBLE |
 WS_CLIPSIBLINGS | WS_DLGFRAME
CAPTION "Sample BWCC Dialog"
CLASS "BorDlg"
BEGIN
 CONTROL "", 100, "Static", SS_ICON | WS_CHILD | WS_VISIBLE,
 5, 16, 16, 16
 CONTROL "", -1, "BorShade", WS_CHILD | WS_BORDER,
 33,6,161,126
 ...

 CONTROL "", IDOK, "BorBtn", BS_DEFPUSHBUTTON | WS_TABSTOP |
 WS_CHILD, 154, 9, 32, 20
END

Message box:

#ifdef BWCC
 BWCCMessageBox(GetActiveWindow(), "Unknown MCI Error!",
 "MCI Error", MB_OK | MB_ICONHAND);
#else
 MessageBox(GetActiveWindow(), "Unknown MCI Error!",
 "MCI Error", MB_OK | MB_ICONHAND);
#endif

Null dialog handles from Borland custom dialogs
If you keep getting null dialog handles with Borland C++ unless I have Turbo C++ running, your dialog
is probably of the BorDlg class, which requires code in BWCC.DLL.    However, you have probably
not done anything to force BWCC.DLL to be loaded with your application, so the dialog manager
cannot find the necessary routines to draw the dialog.    The easiest way to force BWCC.DLL to be
loaded is to call BWCCGetVersion() at the very beginning of your application, and to link in
BWCC.LIB.   

Alternatly, you can do a
WinExec("loadbwcc.exe");

when you start up your application, as long as loadbwcc.exe is available.

Memory
Using new() in C++
Global memory owned by DLL
Determining size of physical memory

Using new() in C++
In Borland C++ 2.0, and in 3.x's medium model, new() ends up calling LocalAlloc(), allocating
memory from your near 64K segment.    In BCC 3.x's large and compact models (and in Microsoft
C/C++ 7.0), however, it will make one GlobalAlloc() and do subsegment allocations to allow you
access to the full memory without making excessive demands on the system limit of 4096 (8192 in
386 enhanced mode) global memory handles.

Global memory owned by DLL
If you use GlobalAlloc in a DLL, the application that called the DLL will own the object.    There is a
way around this, though: allocate the memory using the GMEM_DDESHARE flag; this will make the
allocating code segment (rather than the current task) own the memory.

Determining size of physical memory
You need to make a DPMI call to obtain that piece of information.    DPMI call 0500h with ES:DI
pointing to a 30h byte buffer returns the "Free Memory Information":

Offset Description
00h Largest available free block in bytes
04h Maximum unlocked page allocation
08h Maximum locked page allocation
0Ch Linear address space size in pages
10h Total number of unlocked pages
14h Number of free pages
18h Total number of physical pages
1Ch Free linear address space in pages
20h Size of paging file/partition in pages
24h-2Fh Reserved

The size of one page in bytes can be determined by function 0604h, which returns the page size in
bytes in BX:CX.    To call a DPMI function, invoke the interrupt 31h. Carry bit will be clear if call was
successful.

The complete DPMI 0.9 specification is available free from Intel Literature JP26, Santa Clara.    It's
also available on ftp.cica.indiana.edu.

GDI
Animation 92-10-06
Background color
Changing palette entries in 16-color mode
DIB bitmaps 92-10-07

Animation 92-10-06
If you want to do good-quality animation under Windows 3.1 without requiring that each user have a
486/50 with an accelerated video card, you should consider using a differential animation technique.   
There is a good example available on ftp.uunet.uu.net (and also on CompuServe) under
/vendor/microsoft/multimedia/sample    called rleapp, which uses this technique.    Another sample
program in the same directory, transblt, demonstrates a technique for doing fast BitBlits.

Both techniques are also documented in the technotes in /vendor/microsoft/multimedia/technote.

Background color
If you insist on a white background, use

WinClass.hbrBackground = GetStockObject(GCW_WHITEBRUSH);
for your window background.    If it doesn't matter to you, however, you should use the Control Panel-
defined window background color instead:

WinClass.hbrBackground = CreateSolidBrush(COLOR_WINDOW + 1);

Changing palette entries in 16-color mode
If you are using a standard driver, you will need to bypass Windows to do it (if you happen to have a
16-color driver which support palettes, you can use standard Windows palette management
functions).   

Microsoft will tell you to buy the DDK, but there is another way.    Now, the Windows system palette
maps onto the VGA 16-color palette as follows:

VGAPAL SYSPAL VGAPAL SYSPAL
00 00 08 07
01 01 09 13
02 02 10 14
03 03 11 15
04 04 12 16
05 05 13 17
06 06 14 18
07 12 15 19

So you can define some macros to take care of the mapping:

#define syspal(n) (n<7 ? n : (n>8 ? n+4 : (n=7 ? 12 : 7)))
#define vgapal(n) (n<7 ? n : (n>12 ? n-4 : (n=7 ? 8 : 7)))
                 
When you get a WM_SETFOCUS event, save the current state of the hardware colormap and installs
the one you want.    When you get a WM_KILLFOCUS event, restore the original palette. Don't use
the palette registers directly, though, just modify the color registersthat they point to.    (For details on   
redefining a VGA palette, see a book such as A Programmer's Guide to PC and PS/2 Video Systems
by Richard Wilton.)

DIB bitmaps 92-10-07
Microsoft has higher-level DIB library and DLL available for downloading from CompuServe.   
Unfortunately, it is not currently available by ftp.

Miscellaneous
Wsprintf and sprintf
Changing your current directory
Detecting idle time 92-09-15
Extracting icons from a .EXE or .DLL
Finding the location of the executable 92-09-28
Getting the instance handle 92-09-28
GettMultimedia RIFF file format 92-09-15
Restarting Windows 92-10-05
Rebooting the system 92-10-05

Wsprintf and sprintf
wsprintf() can not print floating-point numbers by design.    To print floating-point,
you must use sprintf().    Remember, though, that all strings passed to wsprintf() should be
cast to FAR!

Changing your current directory
The easy way is to use DlgDirList().    You can specify zero for the two ID fields.    You can use
the current window ID for the dialog handle field.   

The standard C library functions chdir() and getcwd() can also be used.

Detecting idle time 92-09-15
The 'idle-detecting' message loop may suit your case.    That is, replace the standard
while(GetMessage()) ... in WinMain() with the something like the following (thanks to Risto
Lankinen for the example):

if (PeekMessage(&msg)) {
 // The queue contains messages - process them
 // GetMessage() would automatically detect WM_QUIT, but
 // we must explicitly check for it.
 if (msg.message == WM_QUIT)
 break;
 if (TranslateAccelerator(hWnd,hAcc,&msg))
 continue;

 TranslateMessage(&msg);
 DispatchMessage(&msg);

 // You might want to save the last time a message
 // was processed
 dwLastMsgTime = GetTickCount();
} else {
 // The queue is empty - user is doing nothing with *this* app
 if (GetTickCount() < dwLastMsgTime) {
 // Timer wrapped around -- do something!
 } else if (GetTickCount() - dwLastMsgTime > MSGTIMEDELTA) {
 // Do something funky
 }

Extracting icons from a .EXE or .DLL
In Windows 3.1, it's easy to enumerate the icons in a Windows EXE or DLL even if you don't already
know their names.    SHELL.DLL exports

HICON ExtractIcon(hInst, lpszExeName, nIcon)
This function returns a handle to the specified icon (where 0 is the default icon displayed by Program
Manager), or the number of icons in the file if you pass in an index of -1.   

Better yet, SHELL.DLL also exports the function:

FindExecutable(lpszFile, lpszDir, lpszResult)
which will give you the executable associated with a given document file.    You can then extract the
appropriate icon from that file.

Finding the location of the executable 92-09-28
To locate your executable program directory , use:

GetModuleFileName(hInstance, (LPSTR) szPath, sizeof szPath)

Getting the instance handle 92-09-28
In general, it's usually best to store the instance handle in a global variable, so that it will always be
available.    If, however, you don't have it handy, you can get it with an easy Windows API call:

GetWindowWord(hWnd, GWW_HINSTANCE)

GettMultimedia RIFF file format 92-09-15
The IBM/Microsoft RIFF and MCI definition document is available for anonymous ftp download from
the /vendor/microsoft/multimedia directory on ftp.uu.net. If you don't have anonymous ftp access, try
CompuServe in the WINSDK forum, or Microsoft Online.

The document describes multimedia interfaces (MCI) and data formats (RIFF).    IBM has committed
to include support for these in OS/2.    These interfaces are already supported in the Multimedia
Extensions for Windows (MME) and Windows 3.1.    Included in the RIFF file format is a waveform
(.WAV) audio definition; this format is the system standard for Windows and OS/2.

Restarting Windows 92-10-05
To restart Windows, use:

ExitWindows(EW_RESTARTWINDOWS, 0)

Rebooting the system 92-10-05
To reboot the entire system, use:

ExitWindows(EW_REBOOTSYSTEM, 0)

Interfacing to the outside world
Communicating with DOS applications 92-09-15
Multimedia 92-10-07
Mixed-language programming

Communicating with DOS applications
Passing a pointer to a DOS application or TSR 92-09-15
Starting a Windows application from a DOS session 92-09-15

Passing a pointer to a DOS application or TSR 92-09-15
In order to pass a pointer to a DOS application (to share memory), you can not just pass a Windows
pointer.    GlobalLock() returns a segment selector table entry, not a physical address.    Thus, the
simple code below will give you an incorrect address:

lpBuffer = GlobalLock(hBuffer);
InRegs.x.di = FP_OFF(lpBuffer);
SegRegs.es = FP_SEG(lpBuffer);
int86x(0x7f,&InRegs,&OutRegs,&SegRegs);

The problem is that the TSR or DOS application runs in real mode, while Windows applications
running in Standard or 386 Enhanced mode use selectors [LDT] and not pointers[SEG:OFF] to
access memory.

The following gives an outline of what needs to be done, courtesy of Glenn Boozer
(glenn@imagen.com):

To send a pointer to DOS [a Segment:Offset address, not a protected mode selector]
· DosAllocate a memory buffer    [This will be a buffer in the first 640K of address space.    This

buffer is locked and will not move.    [Not recomended by Microsoft]
· Copy the data from the buffer that is in "Windows Application space" into the DOS Buffer
· Get the Segment and Offset of the DOS buffer and pass that to the TSR.
· Release the DOS Buffer

To use a pointer [Segment:offset] you got from a DOS application:
· Allocate a Selector [Not recomended by Microsoft]
· Set the selector base and length with the data returned from the TSR.    [Not recomended by

Microsoft]
· Use the data
· Release the selector.    [Not recomended by Microsoft]

Selected code fragments follow.

// Windows kernel calls not in WINDOWS.H
WORD FAR PASCAL SetSelectorBase(HANDLE hSelector, DWORD dwBase);
WORD FAR PASCAL SetSelectorLimit(HANDLE hSelector, DWORD dwLimit);
DWORD FAR PASCAL GlobalDosAlloc(DWORD);
WORD FAR PASCAL GlobalDosFree(WORD);

HANDLE FAR PASCAL
GetPhysicalMemoryHandle()
{
 HANDLE hSel;
 HANDLE hSel2;

 /*. create a selector for use by MakePhysicalMemoryPtr() */
 /* The how of this is taken from an SR response. */
 if ((hSel2 = GlobalAlloc(GMEM_FIXED,(long) 64)) != NULL) {
 hSel = AllocSelector(hSel2);
 GlobalFree(hSel2);
 } else {
 hSel = (HANDLE)NULL;
 }
 return hSel;
}

LPSTR NEAR PASCAL
MakePhysicalMemoryPtr(WORD wMemHandle, WORD wSegment, WORD wOffset)
{
 /*. set selector base from wSegment parameter */
 SetSelectorBase(wMemHandle, (((LONG)wSegment)<<4) + wOffset);
 /*. set limit for 4K bytes accessable */
 SetSelectorLimit(wMemHandle,(long) 0x0FFF);
 /*. make and return a long pointer using passed wMemHandle */
 return (LPSTR)MAKELONG(0, wMemHandle);
}

void FAR PASCAL
FreePhysicalMemoryPtr(LPSTR lpMemPtr)
{
 FreeSelector(HIWORD(lpMemPtr));
}

Main code fragment:

// Assuming protected mode
if (!(hPhysMemHandle = GetPhysicalMemoryHandle())) {
 MessageBoxOKHand((LPSTR) "Error: Could not get "
 "physical memory for TSR");
 return;
}

// [call tsr-calling routine n times]

// Return the handle we allocated
FreePhysicalMemoryPtr(lpPhysPtr);

TSR-calling routine:

static FPTR near fp;

lpsDosParagraphSelector.d =
 GlobalDosAlloc((DWORD)max(APImsg.len, 4));
if(APImsg.buffer) {
 lmemcpy((LPSTR)MAKELONG(0, lpsDosParagraphSelector.w.sel),
 APImsg.buffer, max(APImsg.len, 4));
 fp.w.sel = lpsDosParagraphSelector.w.par;
 fp.w.off = 0;
} else {
 /* Null Pointer */
 fp.p = 0L;
}
dx = fp.w.sel;
bx = fp.w.off;

// Call the TSR
rc = int2f(ax, cx, si, di, dx, bx, (unsigned int far *)&di,
 (unsigned int far *)&si, (unsigned int far *)&cx,

 (unsigned int far *)&dx, (unsigned int far *)&bx);

(void) GlobalDosFree(lpsDosParagraphSelector.w.sel);
lpPhysPtr = MakePhysicalMemoryPtr(hPhysMemHandle, dx, bx);
fp.p = lpPhysPtr;

Starting a Windows application from a DOS session 92-09-15
This is really quite difficult, and you may be happier using an existing implementation (such as wx and
wxserver, which comes with the Windows 3.1 SDK), because in 386Enhanced mode the DOS
application and the Windows world are in separate virtual machines; the only context they have in
common is the underlying DOS.    The basic idea is to use a TSR that
talks to both the DOS app and a Windows "wrapper" app that does the WinExec() for you. Thanks
for the explanation are due to Ed Schwalenberg (ed@odi.com).

Create a TSR that gets loaded before Windows is started.    Its services will be available to both DOS
apps and Windows apps.    When Windows is started, your wrapper program can call the TSR with an
INT 2F, giving it the address of some GlobalDOSAlloc()'ed memory which will be used to pass
information back and forth between the TSR and protected-mode Windows.    While processing this
INT 2F, you issue one of your own, with AX=1683h, which will return in BX the magic number of the
Windows virtual machine (VxD), which is currently 1 but may change.

The DOS application issues an INT 2F, passing the name of the desired application to the TSR.   
The TSR copies the information into a private data buffer in the TSR's address space, NOT to the
GlobalDOSAlloc()'ed memory (which only exists in the Windows virtual machine).

Now for the hard part.    You need to call back to Windows when the Windows VM is scheduled.    To
do that, use INT 2F, AX=1685h, BX=Windows VM number which you saved from the initialization
step, CX=flags, DS:SI= priority boost and ES:DI=CS:IP of a procedure to call.    When the
Windows VM is scheduled, your procedure will be called.    That procedure can copy the name of the
application into the GlobalDOSAlloc()'ed memory, issue an INT 2F to the windows wrapper
program, and IRET.    The windows wrapper program can use the data in the
GlobalDOSAlloc()'ed memory to WinExec() the desired program.

Multimedia
Using an accurate timer 92-10-06
MIDI file standard 92-10-07
Playing sounds from Visual Basic 92-09-28

Using an accurate timer 92-10-06
The standard Windows (and PC) timer is only accurate to a disappointing 18ms.    If you need a more
accurate timer, you should investigate the Windows 3.1 multimedia API, and specifically look at the
functions timeBeginPeriod, timeEndPeriod and timeSetEvent.

MIDI file standard 92-10-07
To find out how to get a copy of the latest MIDI file standard as well as other MIDI-related
documentation, send an email message to mail-server@cs.ruu.nl, with the following contents:

BEGIN
PATH <insert-your-internet-address-here>
HELP
send MIDI/INDEX
END 

Playing sounds from Visual Basic 92-09-28
First, you can execute MCI commands by calling the Windows API:
 

Declare Function mciExecute Lib "MMSystem" (ByVal xstr$)
 As Integer

Sub Form_Click ()
 x% = mciExecute("Play c:\windows\ding.wav")
End Sub

 
If all you want to do is play sounds, there is an alternative:
 
Declare Function sndPlaySound Lib "MMSYSTEM" (ByVal snd$, ByVal f%)
 As Integer

Sub Form_Click ()
 x% = sndPlaySound("chime.wav", 0)
End Sub
 
The second argument determines whether the system waits until the sound is finished before
returning from the call (0) or returns immediately while the sound is playing (1). 

Mixed-language programming
Visual Basic and Fortran
Passing a structure back to Visual Basic from a DLL

Visual Basic and Fortran
If you want to use Visual Basic to build a slick interface for your old text-based Fortran code, the
approach to take is to build the Fortran code into a DLL, and call it from Visual Basic.    You may either
pass the parameters as arguments, or you may want to construct a temporary file for more extensive
input.

Passing a structure back to Visual Basic from a DLL
The following description is courtesy of Todd Ogasawara, 1991 (reachable at
todd@pinhead.pegasus.com).    The code fragments were developed and tested using Borland C++
2.0 and Microsoft Visual Basic.

· Define a type that is a pointer to a structure.
typedef struct {

long fsize; // file size in bytes
char ftime[25]; // last file access time string

} * fileStruct;

· Sample function prototype declaration.
int FAR pascal FileInfo(char filename[], fileStruct);

· Sample DLL C function that receives a filename in a char array from Visual Basic and passes
back file size (long) and file modification date (char array) in a structure.

// Get file info (access time & size)
int FAR pascal
FileInfo(char filename[], fileStruct far fileinfo)
{

struct stat statbuf;
FILE *stream;
if (!(stream = fopen(filename, "r"))) {

return(-1); // ERROR: cannot find named file
} else {

fstat(fileno(stream), &statbuf);
fclose(stream);

}
/* file size */
fileinfo->fsize = statbuf.st_size;
/* access time */
strcpy(fileinfo->ftime,ctime(&statbuf.st_ctime));
return(0);

}

· Declare a Visual BASIC "user-defined type" (i.e., a "structure") that matches the structure
declared in the DLL C code. See pages 260-261 of the Microsoft Visual BASIC Programmer's
Guide for more information about user-defined types.

' type (structure) definition in GLOBAL.BAS
Type FileStruct

Fsize As Long
Ftime As String * 25

End Type

· Declare the function in your GLOBAL.BAS (or whatever you named the file you keep global
information in). In this example a function is declared since the DLL C function returns a -1 to
indicate an error and a 0 to indicate success. Note that the filename is passed from Visual BASIC
to the DLL C function by value (ByVal) while the data in the DLL C structure is passed to Visual
BASIC by reference (As). See pages 379-387 of the Microsoft Visual BASIC Programmer's Guide
for more information about declaring and calling DLL routines.

' declaration in GLOBAL.BAS
Declare Function FileInfo Lib "dosdll.dll" (ByVal FileName$,

FileInf As FileStruct) As Integer

· Example of using the DLL function 'FileInfo' in Visual BASIC.

If (Myfile.Filename = "") Then
Exit Sub

Else
ThisFileName$ = UCase$(Myfile.Filename)

End If
FileStatus% = FileInfo(ThisFileName$, FileStat)
ThisFileSize$ = Format$(FileStat.Fsize, "###,###,###") + "

bytes" ThisFileStat$ = Left$(FileStat.Ftime, 24)

Putting it all together
Compiling and linking 92-09-28
Debugging 92-09-28
Resources and tools 92-09-28
Documentation and help

Compiling and linking
Large memory model: why or why not?
Emulator vs. alternate floating-point math
Emulator floating-point: corrupted code segments
Exporting CDECL functions 92-09-28

Large memory model: why or why not?
Yes, you can do it.    There are several problems with using large model, though:

· Your program's data memory will be fixed in real mode.    Effectively, your application will cripple
any real-mode Windows system.    (Of course, this problem doesn't exist with Windows 3.1!)

· Your application will run more slowly, since all your data must be accessed through far pointers.

· You may only be able to have one instance of your application active at any one time. This
restriction is imposed by Windows on applications with multiple static data segements: in large
model, that means most applications generated with C or C++.    Borland C++ 3.0+ and Microsoft
C/C++ 7.0 will attempt to keep your static and global data in a single segment (although Microsof
C5.1 an C6.0 will not), so as long as that data does not exceed 64K, you could run multiple
instances of a large-model application created using those compilers.

You should consider very carefully before you decide that large model is the only way to go; the
preferred method is to use medium model, and to allocate far data as required.   

Another alternative is to use a compiler such as Watcom C/386 or Zortech C++ for development; this
will let you use a single 4GB segment, and 32-bit registers, increasing your applications performace
substantially (but limiting it to running in 386 enhanced mode).

Finally, developing for Win32 (which encompasses both the upcoming Windows NT and Win32s) will
allow you to use the flat 32-bit memory model without the restrictions and penalties associated with
using a 32-bit environment on Windows 3.x.

Emulator vs. alternate floating-point math
The alternate math package is faster on non-x87 machines, but slower on those equipped with a
math chip.    Depending on your application, you might want to ship either, or both.    If you need
accuracy in floating-point calculations, though, stay away from the alternate math package.

Borland C++ does not support the alternate math package, but it does have a "fast floats" option,
which is roughly equivalent.

Emulator floating-point: corrupted code segments
Compiling a Windows application with emulator floating-point causes corrupted code segments when
running on a non-8087 equipped system in Windows 2.x and Windows 3.0 Real mode.

The emulated floating point tries to used the coprocessor. When it does not find one on startup, it
patches the code to use the software floating point. Patching does not, however, recalculate the code-
segment checksum, thus the Windows debugging kernel chokes when it finds that something terrible
must have happened to the code.    (This problem does not affect Windows 3.x in Standard or 386
Enhanced modes.)

You can get Windows to ignore the checksum errors by setting EnableSegmentChecksum=0 in the
[debug] section of win.ini; the problem only affects debugging versions of Windows 3.0.

Exporting CDECL functions 92-09-28
If you specify functions to be exported in the .def file, the linker will assume that they use the
Windows standard Pascal calling convention.    If you didn't declare some of them as PASCAL, you
will need to specify those functions in the .def file as _funcname instead of funcname, since C
compilers always add an underscore to the front of a name.

Debugging
Turbo Debugger video configuration 92-09-14
Turbo Debugger and Windows 3.1 92-09-28
Dr. Watson log files
Programmer's WorkBench and tab characters 92-09-28

Turbo Debugger video configuration 92-09-14
Borland's TDW debugger uses its own video drivers for single-screen Windows debugging.    As a
result, you must make sure that the debugger can find the correct drivers.    As an example, if you are
using an ATI Graphics Ultra (or Graphics Vantage), you need to make sure the following lines are in
your tdw.ini file:

[Debugger]
VideoDLL=C:\TPW15\ULTRA.DLL

[VideoOptions]
DebugFile=C:\TDW.LOG

Turbo Debugger and Windows 3.1 92-09-28
TDW 2.5 and TDW 3.0 need a new version of windebug.dll; otherwise the following error is being
displayed while loading a .EXE file in the debugger:

Cannot load WINDEBUG.DLL

The new windebug.dll can be found at ftp.cica.indiana.edu in the directory /pub/pc/win3/programr/tp
as "tpwin31.zip".    TDW 2.5 still has a few problems with Windows 3.1 (it sometimes generates
exception 13 errors while stepping trough code), but this is a workable solution.

TDW 2.51 (shipped with the Turbo Pascal for Windows 1.0 maintenance release) does not function
correctly with Windows 3.1.

TDW 3.1 (shipped with TPW 1.5 and BC++ 3.1) has been written for Windows 3.1 and works correctly
under both Windows 3.0 and 3.1.

Dr. Watson log files
The Dr. Watson log shows the contents of the registers when you application crashed.    Even if you
can't use it to determine contents of the variables, you can pinpoint the location of the crash.

Make sure you keep a copy of the .map file generated by the linker for the version shipped to your
customers; you can then look up the crash location manually from this file when you receive a Dr.
Watson log.    If you linked a version with /CO /LI, the .map file will also contain line number
information, allowing you to pinpoint the line in your program.

Programmer's WorkBench and tab characters 92-09-28
If you want real tab characters inserted into your source files whenever you press Tab, specify
RealTabs:Yes and Graphic:Tab in your tools.ini file.    You can also quote a single tab character by
preceing it with Ctrl+P.

Resources and tools
Tracking down unfreed resources
Running out of resources in Visual Basic 92-09-21
Linking fonts into a .FON file
Borland C++ Windows tools and Windows 3.1 92-09-28

Tracking down unfreed resources
There are several utilities available on ftp.cica.indiana.edu which will monitor the heap and memory
usage. Look for files ma.zip and ha.zip in /pub/pc/win3/utils.    The Windows 3.1 debug kernel
(included with the SDK) also checks for unfreed resources when an application exits.

Running out of resources in Visual Basic 92-09-21
Visual Basic is limited to 255 controls per form, but the real limit depends on Windows system
resources, which in turn depends on what kind of controls they are and what else you have going on
in your system at the time.    Here's a simplified explanation:

Windows does indeed give you access to many megabytes of memory (16Mb in Windows 3.0, 256Mb
in 3.1).    However, some of that memory is "special" because Windows reserves several 64K
segments for its own purposes.    The most significant of these segments for this discussion are the
USER heap and the GDI heap.    This is where Windows keeps track of many of its internal data
structures -- things like window handles, menus, (USER) and handles to bitmap, clipping regions, and
fonts (GDI).    (Note that these are handles and related data structures, not the actual menus, bitmaps,
or fonts themselves) Collectively,
these two    segments are called "Windows resources" and whichever one of    the two that is closest
to being exhausted is reported as a percentage    (of 64K) in the Help » About dialog in Program
Manager.

It should make sense then that as you approach 0% free in one of these two segments "strange
things begin to happen" because Windows can't allocate space for new Windows or bitmaps or
whatever.

It is unfortunate that there is this 64K limitation: it arises because of Windows' roots in real mode.   
Future versions (both NT and perhaps a future version of Windows for MS-DOS) will
elminate this.    Windows 3.1 was an improvement over 3.0 because it split the single USER heap into
several 64K heaps.

Now, getting back to Visual Basic: every form is a window.    Every control is a window.    Every
window consumes some of the USER heap (some more than others).    Every bitmap consumes some
of the GDI heap; every picture box or form for which you've set AutoRedraw = True also consumes
additional space in the GDI heap.    I'm sure you can see where this is leading: eventually, as you add
controls, you run out of system resources.    The number at which you run out depends on what the
controls are (picture controls chew up resources faster than labels), how many other forms and
controls are currently loaded in your application, and how much of your system resources are being
consumed by other
applications you may be running at that time.

How to work around this?    Only load the forms you need.    Unloaded forms (and the controls on
them) don't use system resources.    Try to reduce the number of picture boxes.    Don't set
AutoRedraw to True. If you're trying to display a lot of bitmaps or a grid of data, consider using a
custom control designed to do that.    The grid control included in the Professional Toolkit allows you
to display lots of information without using up the system resources you would if you placed it all in
text boxes or labels.

If you are running Windows 3.1 (and you really should be) you can call this function:

Declare Function GetFreeSystemResources Lib "User" (ByVal
 fuSysResource As Integer) As Integer

Global Const GFSR_SYSTEMRESOURCES = &H0
Global Const GFSR_GDIRESOURCES = &H1
Global Const GFSR_USERRESOURCES = &H2

This returns the percentage of free system resources For example:

Print GetFreeSystemResources(GFSR_SYSTEMRESOURCES)

This displays the lower of the GDI or USER heaps (this is exactly what is displayed in those about
boxes).    If you want to find out how much space is left in USER, use    GFSR_USERRESOURCES; if you
want to find out how much is left in GDI, use GFSR_GDIRESOURCES. Using this function, you can
determine whether you're actually
exhausting USER (probably) or GDI (less likely, unless you have a lot of bitmaps).

Thanks for the explanation to Joe Robison (joero@microsoft.com).

Linking fonts into a .FON file
The linker provided with the Windows 3.0 SDK will produce the following error when linking fonts:

Link Error L2049: no segments defined

The above LINK error is a bug in link. The fix is to run exehdr /r on the .exe file, and then run rc
on it. The Windows 3.0 SDK linker incorrectly detects an error, and marks the resulting .exe file with
some kind of error bit, even though the rest of the exe file is ok. Exehdr /r will reset this "error bit",
after which rc will work just fine.

An alternate fix is to use link4 from Windows 2.x SDK.

Borland C++ Windows tools and Windows 3.1 92-09-28
WinSight shipped with BC++ 3.0 does not work under Windows 3.1.    There is an update file available
at ftp.cica.indiana.edu in the directory /pub/pc/win3/programr/bcpp as "wsupd1.zip".

Dr. Frank does not work with Windows 3.1.    This program has been reincarnated as an official
Borland tool and is shipped with BC++ 3.1 as "WinSpector".

Documentation and help
Adding bitmaps to helpfiles
Screen Snapshots

Adding bitmaps to helpfiles
When you add a bitmap to a help source document using the [bml ...] command, it freqently does
not appear in the compiled helpfile.    The problem is that the text [bml printer.bmp] is an RTF
bitmap inclusion command (which is why you want it there), but Word assumes you really want the
literal text "[bml printer.bmp]", and escapes the whole sequence when saving the files as RTF. 
Note that the previous description substitutes square brackets for curly brackets to prevent hc from
actually including those bitmaps.    Use curly brackets in your own helpfile source!

You'll get the actual RTF bitmap inclusion command in the RTF file (and thus a bitmap in the compiled
helpfile) by inserting a bitmap using the Word for Windows menu commands and clicking on the "Link
to file" checkbox when it asks you which bitmap to insert.

Screen Snapshots
To take a snapshot of your screen, just press PrtScr, and Windows will copy the image to the
clipboard, from where you can paste it into your favourite application. You can also use Alt+PrtScr to
take a snapshot of only your active pop-up window (child windows such as dialog controls are not
counted as "active").

You may wish to select the Monochrome VGA driver prior to doing the screen print to produce 1-bit
(2-color) bitmaps for easier printing.

As an alternative, you may wish to use a screen grabber/graphics conversion utility such as HiJaak or
PaintShop Pro (see the Microsoft Windows FAQ) if you wish to produce good-quality grayscale
bitmaps..

A programmer's bibliography
Windows 3.1 SDK
Windows 3.0 SDK
Win32 (Windows NT) API
User interface guidelines
Third-party programming guides 92-09-28
Magazines 92-09-21

Windows 3.1 SDK
· Windows Programmer's Reference, Volume 1: Overview.    Microsoft Press, 1992

· Windows Programmer's Reference, Volume 2: Functions.    Microsoft Press, 1992

· Windows Programmer's Reference, Volume 3: Messages and structures.    Microsoft Press, 1992

· Windows Programmer's Reference, Volume 4: Resources.    Microsoft Press, 1992

· Windows Guide to Programming. Microsoft Press, 1992

· Windows Programming Tools. Microsoft Press, 1992

· Windows User Interface Guidelines. Microsoft Press, 1992

· Windows Multimedia Programmer's. Guide Microsoft Press, 1992

· Windows Multimedia Programmer's Reference. Microsoft Press, 1992

· Windows for Pen Computing Programmer's Reference. Microsoft Press, 1992

· Windows Setup Toolkit. Microsoft Press, 1992

Windows 3.0 SDK
· SDK Reference, Volume 1: Functions and messages. Microsoft Press, 1990, part no. 06856

· SDK Reference, Volume 2: Resource scripts and file formats. Microsoft Press, 1990, part no.
06857

· SDK Guide to Programming. Microsoft Press. 1990, part no. 06854

· SDK Tools. Microsoft Press, 1990, part no. 06854

· SAA CUA Advanced Interface Design Guide. IBM, 1989, part no. SC26-4582-0

Win32 (Windows NT) API
· Win32 API: An Overview. Microsoft Press, 1992

· Win32 Programmer's Reference, Volume 1: Overview, functions (A-O). Microsoft Press, 1992

· Win32 Programmer's Reference, Volume 2: Functions (P-Z). Microsoft Press, 1992

User interface guidelines
· Windows User Interface Guidelines.    [for Windows 3.1, Pen Windows and Windows NT]

Microsoft Press, 1992

· SAA CUA Advanced Interface Design Guide. [for Windows 3.0 and OS/2 1.x] IBM, 1989, part no.
SC26-4582-0

· SAA CUA'91 Design Guide. [for OS/2 2.0] IBM, 1991, part no. SC34-4289, $10.00

· SAA CUA'91 Reference. [for OS/2 2.0] IBM, 1991, part no. SC34-4290, $18.25

Third-party programming guides 92-09-28
Special notice must go to Charles Petzold's Windows bible, which is shown first.    All other Windows
programming guides are listed alphabetically by author.

· Petzold, Charles: Programming Windows, 3rd edition (with disk).    Microsoft Press, 1990, ISBN 1-
55615-264-7

· Baer, Jürgen: Introduction to WIndows 3.1 Programming.    Abacus, 1992, $ 34.95

· Baer, Jürgen: Windows 3.1 Intern (with disk).    Abacus, 1992, $ 49.95

· Clark, Jeffrey: Windows Programmer's Guide to OLE/DDE (with disk).    SAMS, 1992, $ 34.95

· Custer, Helen: Inside Windows NT. Microsoft Press, 1992,    ISBN: 1-55615-481-X

· Dilascia, Paul: Windows++.    Addison-Wesley, 1992, $29.95

· Farrell, Tim: Programming in WIndows 3.1, 2nd edition (with disk).    Addison-Wesley, 1992,
$29.95

· Klein, Mike: Windows Programmer's Guide to DLLs and Memory Management    (with disk).   
SAMS, 1992, $ 34.95

· Heiny, Loren: Windows Graphics Programming with Borland C++.    Wiley, 1992, $ 29.95

· Heller, Martin: Advanced WIndows Programming.    Wiley, 1992, $ 32.95

· Leavens, Alex: Windows Programmer's Guide to Resources (with disk).    SAMS, 1992, $ 34.95

· Leonhard, Woody: Windows 3.1 Programming for Mere Mortals.    Addison-Wesley, 1992, $ 34.95

· McCord, James: Developing Window Applications With Borland C++ 3.0, SAMS, 1992, ISBN 0-
672-30231-4, $ 39.95.

· McCord, James: Windows 3.1 Programmer's Reference.    Que, 1992, $ 39.95

· Norton, Daniel A.: Writing Windows Device Drivers. Addison-Wesley, 1991, $29.95

· Norton, Peter: Borland C++ Programming for WIndows.    Bantam, 1992, $ 29.95

· Norton, Peter and Paul Yao: Windows 3.1 Power Programming Techniques. Bantam Books,
1992, $29.95

· Rector, Brent: Developing Windows 3 Applications Microsoft Windows SDK.    SAMS, 1992, $
29.95

· Richter, Jeffrey M.: Windows 3: A Developer's Guide (with disk). M&T Books, 1991, ISBN 1-
55851-164-4

· Schulman, Andrew: Undocumented Windows (with disk).    Addison-Wesley, 1992, $ 39.95

· Shammas, Namir: Windows Programmer's Guide to Object Windows Library (with disk).    SAMS,
1992, $ 34.95

· Shammas, Namir: Windows Programmer's Guide to Microsoft Foundation Classes (with disk).   
SAMS, 1992, $ 34.95

· Southerton, Alan: Windows 3.0 Programming Primer (with disk).    Addison-Wesley, 1990, $ 34.95

· Wilken, Peter: Windows System Programming (with disk).    Abacus, 1991, $ 39.95

· Wilton, Richard: Microsoft Windows 3 Developer's Workshop. Microsoft Press, 1991, $24.95

Magazines 92-09-21
· BasicPro Magazine

299 California Ave. S120, Palo Alto, CA 94306-1912
(415) 688-1808
Not Windows-specific, but with extensive Visual Basic coverage

· Dr. Dobbs' Journal
411 Borel Ave., San Mateo, CA 94402-3522
(800) 456-1215, (303) 447-9330
Technical.    Moderate Windows coverage.

· Inside Visual Basic
9420 Bunsen Parkway, suite 300, Louisville, KY 40220
(800) 223-8720, (502) 491-1900

· Microsoft Systems Journal
501 Galveston Dr., Redwood City, CA 94063
(415) 366-3600
Technical.    Extensive Windows coverage.

· Windows Magazine
600 Community Community Dr., Manhasset, NY 11030
(800) 248-3584, (303) 447-9330
Non-technical.

· Windows/DOS Developer's Journal
2601 Iowa Rd., Lawrence, KS 66046
(913) 841-1631
Technical.    Good Windows coverage.

